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Abstract

Before any code can be interpreted, compiled, or otherwise processed, it must first be parsed.
This process of mechanically reading and interpreting code is a well-trodden area of compiler
design, and one that has many existing tools and methods. A programmer can succinctly
specify the syntax of a language and use a variety of tools, known as parser generators,
to create code which implements the translation from that syntax into a tree structure for
evaluation or compilation.

Recent developments in the field allow for a way to be certain that this translation is
done following the desired specification. Rather than simply trusting a handwritten parser,
or trusting those who write parser generators such as yacc, it is now possible to use formal
methods to prove that the parsing code is correct with respect to the specification that was
used to create it.

This thesis is an exploration of using said methods to produce a verified parser for the
probabilistic programming language Stan, a common statistical modeling and computation
language. To this end, an existing tool for parser generation and verification, Menhir, was
extended to allow error reporting functionality alongside its validated output.
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1 Introduction

The parsing of a program happens immediately following the reading of a source file, and it
is the step that enables everything that follows. As soon as a program has been read and
split into tokens (a stage called lexical analysis, or more simply, lexing), it is compared to
the formal specification of the language and interpreted into a more organized form than
mere text. This can be done through a variety of methods, with one of the most common
being the use of tools known as parser generators to automatically create code from simple
specifications of the grammar.

Through the use of one such parser generator, Menhir, it is now possible to generate
parsers that are also accompanied by automatically-verified proofs of certain desirable qual-
ities. Most notably, one can now be certain that the language the generated code recognizes
will precisely match the formal specification given. This thesis will investigate the use of
this tool to parse the language Stan and also extend it with some useful functionality for
practical implementations seeking to gain the advantages granted by this verified mode.

This section is intended to bring someone generally familiar with the related methods
and theory up to speed on the salient details of verification, parsing, and the Stan language.
It is not intended as a reference for learning from scratch: the reader is referred to the many
authoritative sources on the subjects [3, 8, 14,16].

1.1 Parsing

Parsers are functions that receive a stream of tokens and verify that they match the required
specification of the language being parsed. In this context, the term language simply means
a specific set of strings. If this verification succeeds, the parser usually produces a parse tree
which is then passed on to the remainder of the compiler. This result is commonly referred
to as an abstract syntax tree, or simply AST, and it represents the source program in a
hierarchical structure. If instead the parser rejects the input, it is typical to give an error
message describing the problem with the input string. There are a variety of methods for
parsing, including both hand-written approaches and the parser generators discussed in this
thesis [4].

1.1.1 Context Free Grammars

Any method of parsing must begin with a formal specification of the syntax of the language.
The main method of specification is through the use of context-free grammars, a formal
structure defining a language. These constructions can describe a broader class of languages
than the more commonly seen regular expressions. Context-free grammars (CFGs) are made
up of four main components [3, 4]:

1. A set of non-terminal symbols that denote sets of strings.

2. A start symbol, a distinguished non-terminal which is used to begin all language deriva-
tions.

3. A set of terminal symbols that are the basic symbols which make up the language. In
most cases, this set corresponds directly to the set of tokens.
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4. A set of productions that provide rules for translating from a non-terminal to terminal
and non-terminal symbols. By convention, a set of productions is generally used as the
complete specification of the language, with the start symbol’s productions listed first.
Productions are written as nt → derivation or nt ::= derivation, in a format known
as Backus-Naur form [2]. If there are multiple productions for a given non-terminal,
the various options can be written as x | y.

This is usually easier to understand by an example. Perhaps the simplest non-trivial CFG
is the following single production:

expr ::= ‘x’ | expr ‘+’ expr

This grammar contains one non-terminal (expr) and two terminal (x, +) symbols. It defines
an infinite language of repeated additions. Some members of this language are x, x + x,
and x + x + x + x + x. Because this production features the same non-terminal on both
sides of the translation, it is said to be a recursive rule. It is possible to be more specific in
some cases, e.g. a rule a ::= a ‘.’ | ‘.’ is not just recursive but left-recursive, as the only
recursive application is to the left of a non-recursive string. Right recursion for grammar
rules is similarly defined [4].

Parsing a language specified by a CFG is the process of finding a derivation for a given
string using the grammar’s productions. Beginning with the start symbol, at each step a non-
terminal is re-written using one of the options that appear in the body of its corresponding
production.1 Any string for which a derivation exists is said to be in the language or accepted
by the grammar. A derivation step is conventionally denoted by ⇒. One derivation of the
string x + x + x in the above language is expr ⇒ expr + expr ⇒ x + expr ⇒ x + x. It is
immediately obvious that this derivation is not unique — in the penultimate step, one could
choose either expr to replace first. By preferring the left instance, we have created a leftmost-
derivation. In more complicated grammars, it may be unclear which order productions are
applied in, even if a derivation direction is preferred. A grammar with more than one
leftmost- or rightmost-derivation is said to be ambiguous [4].

+ *

/ \ / \

4 * + 2

/ \ / \

3 2 4 3

Fig. 1: Two possible parse trees for the same expression, 4 + 3 ∗ 2, which lead to different
numerical evaluations.

Ambiguity can lead to several issues, most notably when it comes to associativity and
precedence of mathematical expressions in the AST produced by the parser [4]. The specific

1 This describes the top-down conception of parsing. An alternative form known as bottom-up parsing is
actually used in generated parsers, but the distinction is not important for this work, and bottom-up parsing
is less intuitive.
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derivation the parser enacts is reflected in the structure of the tree created. While the most
basic of grammars would yield several ways to parse “1 + 2 * 3 - 1 - 1” and confirm it is a
valid form of arithmetic, not all of these would produce a corresponding tree that evaluates
the multiplicative portion before the addition in compliance with standard precedence while
also enforcing the left-associativity of the minus operator.

There are two common ways of resolving ambiguity in parsing. The first is altering the
grammar so that it is unambiguous – this often includes introducing additional non-terminals
into the grammar to force the parsing of certain subexpressions before others, and the use
of left- or right-recursive productions to ensure left or right associativity respectively [4, 8].
The second method, enabled by some parser generators (see 1.1.2), is the ability to annotate
tokens with associativity or precedence information separately from the rules of the grammar
[15]. Both of these will methods be discussed further in Section 3.

1.1.2 Parser Generators

Parser generators are programs for automatically producing parsers from specifications. The
idealized parser generator takes as input a context-free grammar that has been annotated
with semantic actions to perform whenever a production rule is executed and outputs a piece
of code that parses the language specified by that grammar. In practice, not all context-free
grammars are allowed as the input of a parser generator. The generated parsers are typically
LR(k) parsers, This means the parser scans the input from left to right (“L”), produces a
rightmost derivation (“R”), and views the next k input symbols for each parsing action
(typically k = 0 or k = 1). Sometimes an even further restriction on the grammar, known
as LALR or lookahead-LR, is imposed. In practice, the grammars of most programming
languages can be parsed by LR/LALR parsers, but in general there are CFGs which cannot
be [4].

The structure of a parser produced by a parser generator differs greatly from many hand-
written approaches, but the internal workings are not necessary to understand. To make
some of the later discussion clearer, suffice it to know that generated parsers generally model
pushdown automata, meaning finite automata with the ability to use a stack [8]. This is why
the terms “automaton” and “stack” will both figure into discussions of the verified parser.

1.2 Stan

Stan is a compiled probabilistic programming language (PPL) [16]. This means that it allows
users to specify probabilistic models in code, and then inference for these models is done
(semi-)automatically. This is interesting from the standpoint of a compiler writer because a
compiler for Stan does very different things than a standard compiler.

A Stan program is an implementation of a probability density function of a random
distribution.2 The compiler generates code that can produce samples from this probability
density. In the case of existing Stan compilers, this code is in usually in a high-level language
such as C++ [1]. This is in contrast to a ‘traditional’ compiler that translates from a
high-level language to assembly code or other low-level representation with the goal being

2 For numerical accuracy, it is actually an implementation of the log-density, but the idea is the same.



1 Introduction 6

the preservation of semantic meaning during this translation. Stan programs must change
meaning during compilation from a description of a random process into a program that
simulates that randomness. It is worth noting that while the output programs may be
pseudo-random, the compilation itself is deterministic.

While the nature of Stan as a PPL is not necessary to understand in order to parse
it, this does provide one of the philosophical underpinnings for this project. Testing that
the compilation translation was done properly can be very difficult because programs that
simulate randomness are particularly hard to test by traditional means. Take for example
a function that returns a value between 0 and 1 uniformly at random. How does one test
that this function is well-behaved? It is hard to say much more about an individual run of
this function than “the result is between 0 and 1”. Confirming even this is difficult through
testing - if it actually returned 1.1 with a probability of 1 in 1, 000, 000, it is likely any run
of tests would never catch this behavior. However, even if one could test this, a function
that returns 0.5 every time would pass this requirement, and still be remarkably incorrect
compared to the desired behavior. While this is a contrived example, there are demonstrated
instances of bias in the programs existing Stan compilers produced, which were very difficult
to spot [7].

Fig. 2: A very poor randomized program, via xkcd.

One could instead record the results of many runs of said function and then confirm
afterward that they are reasonably close to what would be expected from the specified
distribution – essentially, an appeal to the Law of Large Numbers. Ignoring the question
of what “reasonably close” would mean, this strategy works only if the distribution is well-
known and feasible to calculate many times. For programs that are more complicated than
our toy example it is easy to imagine how this can quickly become difficult to manage. This is
why we instead seek to use formal methods (See 1.3) to prove the correctness of the program,
rather than test it after the fact. The task of formally verifying a compiler for Stan begins
with parsing, hence the existence of this work.

Actually parsing Stan is not greatly influenced by its nature as a PPL. The language
features a largely C-like syntax for expressions, control flow, and functions, with block struc-
tured programs. A simple example is showing in Figure 3. The meaning of these blocks is
unique to Stan [16, Ref. Manual §8], but the syntactic structure easily recognizable to users
of other languages.

In addition to these unique blocks, there are a few operators (such as ∼) that are un-
common, and the ability to give constraints (bounds) to the domain of declared variables.
The full syntax is given in the Reference Manual as a Backus-Naur form context free gram-
mar [16, §1.11], though there are notable differences between this grammar and those actually
used in practice in the existing Stan compiler. These will be discussed more in Section 3.

https://xkcd.com/221/
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data {

int<lower=0> N;

vector[N] x;

vector[N] y;

}

parameters {

real alpha;

real beta;

real<lower=0> sigma;

}

model {

y ~ normal(alpha + beta * x, sigma);

}

Fig. 3: An example linear regression Stan model [16, User Guide §1.1].

1.3 Formal Verification

Formal Verification is the practice of proving properties of a program through standard
mathematical tools. Such proofs are often performed in a semi-automatic fashion with the
aid of a proof assistant. These are tools that automate some basic parts of proofs while
requiring the programmer to provide the remaining steps. Coq is both a proof assistant
and a functional programming language [14]. This means one can both write programs and
prove properties about them in the same language. That is to say one writes software that
is correct by construction.

There are several intellectual hang-ups associated with formal verification of software. If
software can be written correctly without testing, why is that not the standard practice?
Is it even possible to have a proof written in a way computers can understand, check, and
assist with?

The answer to both of these hinges on the work the programmer must do. It is easy
to prove many simple things on a computer, and the computer can assist with repetitive,
simple tasks — indeed, this is what computers do all the time in other facets of work. Unlike
many proofs in mathematics, proofs of software correctness are often intellectually simple,
it is just the size of the problem that makes it infeasible to prove ‘by hand’. There are few
requirements for ‘tricks’ or the invention of new techniques, just the repeated application of
many basic principles such as induction or case analysis. The computer can be quite good
at solving incredibly large and repetitive (but ultimately quite ‘dumb’) proofs.

Writing proofs in such a way to leverage this capability can a difficult and time-consuming
task for the programmer, but it is far from impossible. We will discuss in Section 1.3.1 one
example of a large fully verified program which shows that it truly can be done in practice.
Additionally, as discussed above, some problems lend themselves more naturally to formal
methods; for problems that the more traditional means of testing would also require a good
deal of work, or for which complete testing is infeasible, there is a prime opportunity to use
the tools of formal verification to avoid these pitfalls.



2 Validated Parsing in Menhir 8

Coq is written in OCaml and has many similar features as a programming language. It
features the ability to be “extracted,” a process of mechanically translating Coq code to
OCaml or other languages. Coq’s proof abilities are based on the formal language of the
Calculus of Inductive Constructions [9]. It is not essential to understand these details –
indeed, one could spend many years trying – they are merely brought up as a starting point
for the curious.

1.3.1 The CompCert C Compiler

CompCert is a compiler for a large subset of the language C. It is of particular interest
because it is a formally verified C compiler written in Coq [12, 13]. It serves as the ‘prior
art’ for this work, and it led to the development of the primary tools used herein, including
the verified Menhir mode discussed in Section 2 [11].

CompCert provides both a proof positive of the feasibility of the broader goal of verifying
a compiler and a specific model for parsing in a verified environment. Its methods are used
as both a basis and a point of comparison for the rest of this work.

The original paper describing CompCert [12] also provides many alternative justifications
to the earlier question of why to pursue formal verification above and beyond standard
testing. To summarize one of their arguments that also applies to compiling Stan, great
effort is often taken to ensure that the source code of a program does what is intended. In
C, this may mean static analysis or program proof to ensure the correct thing is done by the
code. In Stan, considerable time may be spent ensuring that the program exactly matches
the probability distribution desired. However, in both cases, this analysis and preparation
are dependent on the compilation being correct – an error in compilation can completely
obviate any guarantees made at the source level, where most reasoning about programs is
done.

2 Validated Parsing in Menhir

Menhir [15] is a parser generator for the language OCaml. It is a successor to ocamlyacc,
which as implied by the name is inspired by the original C yacc. It features many improve-
ments over ocamlyacc, including parameterized non-terminals, the ability to generate parsers
for a larger family of grammars (LR(1), compared to ocamlyacc’s LALR(1), see 1.1.2), and
the ability to name semantic values explicitly as opposed to the traditional $1, $2, . . .
syntax.

Menhir’s ‘killer feature,’ for the purposes of this thesis, is the ability to generate parsers
with multiple backends, including a backend for Coq. This produces a parser automaton im-
plemented in Coq that comes with proofs of soundness (the parser only accepts valid inputs),
completeness (the parser accepts all valid inputs), and safety (the parser will not produce
an internal error) in the accompanying library, coq-menhirlib [11]. We will interchangeably
refer to this as both a validated and a verified parser.
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2.1 Basics

The existing Stan parser already used Menhir as its parser generator (see 3), but directly
using this grammar was not possible due to several restrictions placed on Menhir’s Coq
mode compared to typical usage. They are enumerated in full in the manual [15], but to
summarize the most relevant changes: the grammar must be unambiguous, must not rely on
associativity and precedence directives, must not use the Menhir standard library, and must
have a valid Coq type for every non-terminal. Additionally, many of the standard ways of
handling errors are unavailable (see 2.3). Finally, the semantic actions of the parser must be
expressed in Coq code, not OCaml.

Once a specification is created in compliance with these requirements, it can be turned
into a parser through passing the --coq flag to Menhir. This generates a file with two
modules, one containing the grammar and semantic actions, and the other containing the
parser automaton. Each entry point3 of the grammar has a function that parses its portion
of the language and accompanying theorems and proofs for said entry point. There are some
important details that a user should understand about this parser. One key detail is that
termination is not guaranteed directly (and in fact, cannot be in general), but rather the
parser uses a “fuel” based approach, where a maximum number of steps is provided as an
input parameter, in order to satisfy Coq’s requirements for termination [11,15].

Each parsing function returns a sum type with three branches:

Inductive parse_result :=

| Fail_pr: parse_result

| Timeout_pr: parse_result

| Parsed_pr: symbol_semantic_type (NT (start_nt init)) ->

Stream token ->

parse_result.

There is a failure case for invalid inputs, a timed-out case for when the fuel has been ex-
hausted before the parse completes (or encounters an error), and a success case for when a
valid parse is found. The success case carries a semantic value (usually an AST) and the
remainder of the tokens, as one familiar with other parsers might expect. In practice, one
can assume that the timeout case will not occur for any non-pathological program, and it is
often ignored, meaning only the other two return types must be considered.

2.2 Error Messages and Real-World Parsing

The failure outcome of the parse function is, in some ways, just as interesting as the success
outcome.

One of the most useful (and certainly most visible) features of most parsers is their
ability to report errors back to the programmer. When they encounter a program that is
not syntactically sound, they can inform the programmer of the problem and give hints on
what should be done to address it. Making these messages useful is imperative, as “Bad

3 Menhir allows multiple start symbols for a grammar. These are referred to as the entry points, and each
one receives its own parsing function.
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input program” can take a massive amount of time to resolve, but “Missing ) on line 32” is
fixed almost instantly.

After successfully transforming the Stan reference parser into one suitable for verification
by the Coq mode of Menhir, we considered how best to generate these error messages. Based
on the existing CompCert example, and the rest of the Menhir ecosystem, we identified three
options for proceeding:

1. Follow the lead of CompCert and use a second – unverified – parser that sits in front
of the verified parser and uses Menhir’s “incremental” (or “table”) mode. This is a
backend that, like the Coq mode, changes the style of parser produced and is used in
Menhir’s standard error messaging techniques. This would be a simple solution that
clearly has been used before.

2. Modify Menhir’s Coq mode significantly to allow it to be run in the same incremental
style that enables the standard error messaging (and additional error recovery features)
that are available in Menhir’s “table” backend.

3. Modify Menhir’s Coq mode to return the parser’s state and other contextual informa-
tion when an error state is entered.

We considered each choice in turn.

2.2.1 A Second Parser

The most straightforward choice would be to use a second parser to handle the error mes-
saging. This is done in CompCert’s C compiler, which also does lexical feedback through
this initial parser [10]. The grammar structure of this additional parser would be the same,
and Menhir supports flags for automatically generating grammar specification files with the
semantic actions removed. This would allow someone who chooses this path to automatically
create the second parser as part of their build system with relatively minimal effort.

The main arguments against this approach are twofold. First, this approach adds nothing
to the existing tools and methods. It is entirely trodden terrain. Secondly, parsing twice is
both inelegant and (at least for Stan) unnecessary.

2.2.2 Verified Incremental Mode

This second option would recreate the existing behavior of Menhir’s incremental API, but
in the verified mode. This alternative backend produces parsers that perform one step of
parsing at a time and then yield their (partial) results to the calling code. Syntax errors
can be handled while they occur, rather than the entire parse failing, and this allows both
error-messaging and error-recovery to be done in a natural and elegant way. Two concerns
made this option undesirable.

First, this is the approach that would require the most changes to Menhir. Any existing
use of the tool would need significant changes. Furthermore, the ultimate benefits that those
users received would be relatively limited — with a few notable exceptions, such as the Merlin
language server [5], the incremental mode is often used as simply a very large hammer to
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solve the very small problem of error messaging. The additional features it enables, such as
allowing error resolution, not just recognition, are unnecessary for our (and many other’s)
use case.

It is these very features that actually lead to a second reason to not pursue this path.
Incremental parsing is ultimately driven by the lexer or an external loop, not the parser
itself. This means any true verification of the parser would require proof that the lexer and
other code also maintain the invariants required by the parser’s correctness and completeness
theorems. It would be counter to the entire notion of verifying the parser to allow the lexer
to feed back unverified data following each and every computation, and we therefore decided
against this method.

2.2.3 Meaningful returns on error

Finally, there was the middle road. The parser generated by Menhir’s Coq mode has a sum
type for its output, as show in Section 2.1. By modifying the Fail_pr branch of this type
to include information about the state of the parser during the time the error was detected,
we can reconstruct a meaningful error message after failure. In particular, we can return the
state of the parser and the last token seen. The state is the piece of information used by
Menhir’s existing error messaging functionality when in incremental mode, and clever use of
the token types (as is employed in both CompCert and our parser) allows the retrieval of
crucial context information.

This final option was ultimately selected for use. This required modifications to both
Menhir and the coq-menhirlib library.

2.3 Modifications

There are two basic pieces of information that are useful for creating meaningful error mes-
sages: the state of the parser (which carries information about what was expected and
therefore what went wrong) and the position of the error. The first is relatively simple -
it is usually encoded as a number, and the existing Menhir tools rely on these numbers for
picking which error message is displayed. The second is not immediately available to the
parser, but must be given by the lexer. Luckily, it is quite reasonable to include position
information in each token the lexer produces. The token causing the error can thereafter be
used as a stand-in for the position of the error in the input.

The modifications to Menhir were motivated by making these two pieces of informa-
tion available. This primarily required modification to the file Interpreter.v in the coq-
menhirlib library that is linked to the generated Coq parsers. In particular, the return type
of the parsing functions was updated to:

Inductive parse_result :=

| Fail_pr_full: state -> token -> parse_result

| Timeout_pr: parse_result

| Parsed_pr: symbol_semantic_type (NT (start_nt init)) ->

Stream token ->

parse_result.
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This change was nearly enough on its own, but the existing proofs and usages of this type all
ostensibly needed to be updated to recognize the new Fail_pr_full. However, none of these
actually require this information (this should be obvious, as they predated its inclusion).
Therefore, using the Coq notation functionality, Fail_pr was set up as an abbreviation
for Fail_pr_full _ _. This meant no further modifications to the library were needed to
complete this change.

As mentioned above, the state is often encoded as a simple integer, but in this return
type it is provided as a sum type, state. This type is defined in the generated parser. Im
order to support retrieval of the numerical encoding of the state, an additional function,
Aut.N_of_state (s:state) : N, was added to the parser automaton.4 This number can
be handed off to the code generated by the existing --compile-errors feature of Menhir:
an OCaml function message (s:int) : string that maps from the parser’s state one of
the user-defined error messages.

These together provide enough for first-class error messages from a single, verified parser.
The workflow proceeds something like this:

1. The lexer produces tokens which carry a position payload.

2. The parser is run and returns a parse_result.

3. If the result is a failure, one can use the function Aut.N_of_state to retrieve the state
number from the returned state and extract any position information from the token.
They can then call the generated message function with the state number, and produce
an error message with position and syntax information.

The above functionality was merged into Menhir on April 1st, 2021, and released on
April 19th, 2021. An example is provided in Appendix A. For further reference, consult the
Menhir manual [15] and the provided demo (demos/coq-syntax-errors) written by myself
as part of the contribution to Menhir.

3 Parsing Stan

There are two existing sources of information on parsing Stan. The first is the Stan Refer-
ence Manual. This document contains both a context-free grammar and a table providing
associativity and precedence information that can be used to disambiguate it [16, §11.1 and
6.5]. The second is the stanc3 compiler, which serves as the reference compiler for Stan [1].
The Menhir parser specification from the stanc3 compiler was used as a template and cross-
referenced with the written materials.

There are several notable differences between these two sources. These range from the
inclusion of an element-wise exponentiation operator, .^, which is absent from the docu-
mentation but present in the existing compiler to the over-specification of some parts of the
grammar compared to the parser, such as the inclusion of integrate_1d and other built-in
functions as terminal symbols in the provided grammar that are not separately lexed or
parsed in the actual implementation. In general, preference was given to the working parser

4 In extracted code, this function is called Aut.coq_N_of_state.

https://gitlab.inria.fr/fpottier/menhir/-/merge_requests/13
https://gitlab.inria.fr/fpottier/menhir/-/tree/master/demos/coq-syntax-errors
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over the documentation in areas where they disagreed, as this is believed to represent Stan
‘in the real world’. We mainly differed from stanc3’s parser to conform to the requirements
of the Coq mode for Menhir, but we also made several changes where differences in the AST
required them. One main example of this is stanc3’s preservation of additional parentheses
in the AST, used mainly for pretty-printing, that was decided to not be emulated in this
implementation.

3.1 Grammar Transformations

There were multiple edits needed to modify stanc3’s Menhir specification into one compatible
with the Coq mode.

The first required changes were a number of edits to the grammar being parsed, primarily
as a result of the Coq mode’s lack of precedence declarations. The existing grammar used
these for all the arithmetic and logical operators and to resolve the ‘dangling else’ problem
[1,4,10]. Handling the first of these required rewriting the portion of the grammar handling
expressions to explicitly include the associativity and precedence of the different operators.
This introduced 11 new non-terminal symbols into the grammar to enforce the precedence
hierarchy and an accompanying set of productions which are either left- or right- recursive
depending on the associativity given in the reference manual [16]. To resolve the if/else
ambiguity the standard method of partitioning the parsing of statements into parsing open
statements, which may contain further nested open statements, and non-open or closed
statements, which must be ‘complete’ and contain only closed statements, was used [4, 10,
13]. Both of these changes were first implemented in the existing OCaml/Menhir parser
specification, which was then tested against the reference parser on selected inputs from
the stanc3 test suite to ensure the behavior of the new parser remained consistent. The
resulting grammar, with additional annotations highlighting these changes, can be viewed
in Appendix B.

Once the grammar had been disambiguated without the use of precedence and asso-
ciativity annotations, there were three remaining steps required to produce a parser which
operated with the Coq backend. First, an AST type for Stan was written in Coq follow-
ing the same basic structure as that used in OCaml. Secondly, the semantic actions of the
parser had to be rewritten in Coq. This largely required straightforward translations be-
tween the syntax of the two languages, but some additional concern was needed to ensure
the functions used would satisfy the Coq compiler’s requirements for termination, and some
elements of the Menhir standard library, such as the parameterized non-terminal list, had
to be recreated with Coq semantic actions. Finally, a Coq type signature was written for
each non-terminal symbol in the language. This parser was then incorporated into a larger
body of code based on CompCert where work by Tristan and Tassarotti continues on the
later stages of compilation.

3.2 Error Messages and Other Work

Following the changes to Menhir described in Section 2.3, a few further changes were made to
the parser to enable error messaging. The types described in the parser were all updated to
carry additional location information, and the lexer was updated to provide this information.
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The driver code in the larger compiler was modified to display syntax errors, and the relevant
portion of this code is available in Appendix A. Finally, the error messages were written for
each parser state that can lead to an error. While the .messages file from stanc3 was used
as a reference, the differences between the grammars meant that these needed to largely be
done by hand. Our final parser has 237 possible error-causing states, which correspond to
164 unique error messages.

4 Results

This thesis successfully created a verified parser for Stan for use in a formally verified com-
piler. This required rewriting the grammar and semantic actions for use with the verified
mode provided by the Menhir parser generator. Furthermore, changes were made to Menhir
to allow error messaging capability from the verified parser alone, and these changes were
included upstream by the Menhir developers.

This work allows the further development of the Stan verified compiler, and it provides
greater functionality to anyone seeking to use Menhir to produce realistic, validated parsers.

Another avenue for useful extension of Menhir’s Coq mode which was identified, but not
pursued, would be the addition of the associativity and precedence declarations which are
available in the more typical usage of Menhir. A large amount of manual work was put in to
translating the grammar specification from one that used these annotations to one that did
not, and this required additional testing to ensure that the grammars still agreed with one
another. This serves as both a source of potential human error and a barrier to the adoption
of validated parsing. Implementing these would make transitioning from an existing Menhir
specification to one which could be used with the Coq backend considerably simpler.
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A Error Messaging Code

This code is part of my contributions to the full parser project, built on CompCert [13].

let location t : Lexing.position * Lexing.position =

match t with

(* These four tokens have a payload we ignore *)

| STRINGLITERAL sp | REALNUMERAL sp | INTNUMERAL sp | IDENTIFIER sp ->

snd sp

(* All of the following tokens have no payload, just a position *)

| WHILE p | VOID p | VECTOR p | UPPER p | UNITVECTOR p | TRUNCATE p

| TRANSPOSE p | TRANSFORMEDPARAMETERSBLOCK p | TRANSFORMEDDATABLOCK p

| TIMESASSIGN p | TIMES p | TILDE p | TARGET p | SIMPLEX p | SEMICOLON p

| RPAREN p | ROWVECTOR p | RETURN p | REJECT p | REAL p | RBRACK p

| RBRACE p | RABRACK p | QMARK p | PRINT p | POSITIVEORDERED p | PLUSASSIGN p

| PLUS p | PARAMETERSBLOCK p | ORDERED p | OR p | OFFSET p | NEQUALS p

| MULTIPLIER p | MODULO p | MODELBLOCK p | MINUSASSIGN p | MINUS p | MATRIX p

| LPAREN p | LOWER p | LEQ p | LDIVIDE p | LBRACK p | LBRACE p | LABRACK p

| INT p | IN p | IF_ p | IDIVIDE p | HAT p | GEQ p | GENERATEDQUANTITIESBLOCK p

| FUNCTIONBLOCK p | FOR p | EQUALS p | EOF p | ELTTIMESASSIGN p | ELTTIMES p

| ELTPOW p | ELTDIVIDEASSIGN p | ELTDIVIDE p | ELSE p | DIVIDEASSIGN p

| DIVIDE p | DATABLOCK p | COVMATRIX p | CORRMATRIX p | CONTINUE p | COMMA p

| COLON p | CHOLESKYFACTORCOV p | CHOLESKYFACTORCORR p | BREAK p | BAR p

| BANG p | ASSIGN p | AND p ->

p

let state_num s =

let coq_num = Sparser.Aut.coq_N_of_state s in

let state = Camlcoq.N.to_int coq_num (* convert to caml int *)

in

state

let handle_syntax_error file state token =

let (pos1, pos2) = location token in

let line = pos2.pos_lnum in

let st_num = state_num state in

let col_start = let {pos_cnum;pos_bol} = pos1 in 1 + pos_cnum - pos_bol in

let col_end = let {pos_cnum;pos_bol} = pos2 in 1 + pos_cnum - pos_bol in

let msg = try message st_num with (* generated function *)

| Not_found -> "Unknown error in parser state " ^ string_of_int st_num

in

Printf.eprintf "Syntax error in '%s', line %d, characters %d-%d:\n%s" file line

col_start col_end msg;↪→

exit 1

https://github.com/jtristan/ProbCompCert/tree/pcp-error
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B Final Grammar

The following grammar was generated from the Menhir description file using Obelisk [6].
It is written in a common extension of Backus-Naur form, which allows several shorthand
notations similar to those in regular expressions, such as + and ∗ [2].

There are several sections which are annotated with additional notes on the differences
between this grammar and either the stanc3 grammar or the specification in the manual.

〈program〉 ::= [〈function block〉] [〈data block〉] [〈transformed data block〉]
[〈parameters block〉] [〈transformed param block〉]
[〈model block〉] [〈generated quantities block〉] ‘EOF’

〈function block〉 ::= ‘FUNCTIONBLOCK’ ‘LBRACE’ 〈function def 〉∗ ‘RBRACE’

〈data block〉 ::= ‘DATABLOCK’ ‘LBRACE’ 〈top var decl no assign〉∗ ‘RBRACE’

〈transformed data block〉 ::= ‘TRANSFORMEDDATABLOCK’ ‘LBRACE’
〈top vardecl or statement〉∗ ‘RBRACE’

〈parameters block〉 ::= ‘PARAMETERSBLOCK’ ‘LBRACE’ 〈top var decl no assign〉∗
‘RBRACE’

〈transformed param block〉 ::= ‘TRANSFORMEDPARAMETERSBLOCK’ ‘LBRACE’
〈top vardecl or statement〉∗ ‘RBRACE’

〈model block〉 ::= ‘MODELBLOCK’ ‘LBRACE’ 〈vardecl or statement〉∗ ‘RBRACE’

〈generated quantities block〉 ::= ‘GENERATEDQUANTITIESBLOCK’ ‘LBRACE’
〈top vardecl or statement〉∗ ‘RBRACE’

〈identifier〉 ::= ‘IDENTIFIER’
| ‘TRUNCATE’

〈decl identifier〉 ::= 〈identifier〉

〈function def 〉 ::= 〈return type〉 〈decl identifier〉 ‘LPAREN’ 〈arg decl〉∗‘COMMA’
‘RPAREN’ 〈statement〉

〈return type〉 ::= ‘VOID’
| 〈unsized type〉

〈arg decl〉 ::= 〈unsized type〉 〈decl identifier〉
| ‘DATABLOCK’ 〈unsized type〉 〈decl identifier〉

〈unsized type〉 ::= 〈basic type〉
| 〈basic type〉 〈unsized dims〉
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〈basic type〉 ::= ‘INT’
| ‘REAL’
| ‘VECTOR’
| ‘ROWVECTOR’
| ‘MATRIX’

〈unsized dims〉 ::= ‘LBRACK’ ‘COMMA’∗ ‘RBRACK’

〈var decl〉 ::= 〈sized basic type〉 〈decl identifier〉 [〈dims〉] [‘ASSIGN’
〈expression〉] ‘SEMICOLON’

〈sized basic type〉 ::= ‘INT’
| ‘REAL’
| ‘VECTOR’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘ROWVECTOR’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘MATRIX’ ‘LBRACK’ 〈expression〉 ‘COMMA’ 〈expression〉 ‘RBRACK’

〈top var decl no assign〉 ::= 〈top var type〉 〈decl identifier〉 [〈dims〉] ‘SEMICOLON’

〈top var decl〉 ::= 〈top var type〉 〈decl identifier〉 [〈dims〉] [‘ASSIGN’ 〈expression〉]
‘SEMICOLON’

〈top var type〉 ::= ‘INT’ 〈range constraint〉
| ‘REAL’ 〈type constraint〉
| ‘VECTOR’ 〈type constraint〉 ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘ROWVECTOR’ 〈type constraint〉 ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘MATRIX’ 〈type constraint〉 ‘LBRACK’ 〈expression〉 ‘COMMA’
〈expression〉 ‘RBRACK’

| ‘ORDERED’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘POSITIVEORDERED’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘SIMPLEX’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘UNITVECTOR’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘CHOLESKYFACTORCORR’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘CHOLESKYFACTORCOV’ ‘LBRACK’ 〈expression〉 [‘COMMA’ 〈expression〉]

‘RBRACK’
| ‘CORRMATRIX’ ‘LBRACK’ 〈expression〉 ‘RBRACK’
| ‘COVMATRIX’ ‘LBRACK’ 〈expression〉 ‘RBRACK’

〈type constraint〉 ::= 〈range constraint〉
| ‘LABRACK’ 〈offset mult〉 ‘RABRACK’

〈range constraint〉 ::= [‘LABRACK’ 〈range〉 ‘RABRACK’]

〈range〉 ::= ‘LOWER’ ‘ASSIGN’ 〈constr expression〉 ‘COMMA’ ‘UPPER’
‘ASSIGN’ 〈constr expression〉

| ‘UPPER’ ‘ASSIGN’ 〈constr expression〉 ‘COMMA’ ‘LOWER’
‘ASSIGN’ 〈constr expression〉
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| ‘LOWER’ ‘ASSIGN’ 〈constr expression〉
| ‘UPPER’ ‘ASSIGN’ 〈constr expression〉

〈offset mult〉 ::= ‘OFFSET’ ‘ASSIGN’ 〈constr expression〉 ‘COMMA’ ‘MULTIPLIER’
‘ASSIGN’ 〈constr expression〉

| ‘MULTIPLIER’ ‘ASSIGN’ 〈constr expression〉 ‘COMMA’ ‘OFFSET’
‘ASSIGN’ 〈constr expression〉

| ‘OFFSET’ ‘ASSIGN’ 〈constr expression〉
| ‘MULTIPLIER’ ‘ASSIGN’ 〈constr expression〉

〈dims〉 ::= ‘LBRACK’ 〈expression〉+‘COMMA’ ‘RBRACK’

Note: The following rules concerning expressions are the most markedly different from both
the specification and the existing stanc3 grammar. They have been re-written to enforce the
precedence and grammar rules as specified in the specification document without the use of
annotations.

〈expression〉 ::= 〈or expression〉 ‘QMARK’ 〈expression〉 ‘COLON’ 〈expression〉
| 〈or expression〉

〈or expression〉 ::= 〈and expression〉+‘OR’

〈and expression〉 ::= 〈equal expression〉+‘AND’

〈equal expression〉 ::= 〈equal expression〉 ‘EQUALS’ 〈comparison expression〉
| 〈equal expression〉 ‘NEQUALS’ 〈comparison expression〉
| 〈comparison expression〉

〈comparison expression〉 ::= 〈comparison expression〉 ‘LABRACK’ 〈additive expression〉
| 〈comparison expression〉 ‘LEQ’ 〈additive expression〉
| 〈comparison expression〉 ‘RABRACK’ 〈additive expression〉
| 〈comparison expression〉 ‘GEQ’ 〈additive expression〉
| 〈additive expression〉

〈additive expression〉 ::= 〈additive expression〉 ‘PLUS’ 〈multiplicative expression〉
| 〈additive expression〉 ‘MINUS’ 〈multiplicative expression〉
| 〈multiplicative expression〉

〈multiplicative expression〉 ::= 〈multiplicative expression〉 ‘TIMES’ 〈leftdivide expression〉
| 〈multiplicative expression〉 ‘DIVIDE’ 〈leftdivide expression〉
| 〈multiplicative expression〉 ‘IDIVIDE’ 〈leftdivide expression〉
| 〈multiplicative expression〉 ‘MODULO’ 〈leftdivide expression〉
| 〈multiplicative expression〉 ‘ELTTIMES’ 〈leftdivide expression〉
| 〈multiplicative expression〉 ‘ELTDIVIDE’ 〈leftdivide expression〉
| 〈leftdivide expression〉



B Final Grammar 21

〈leftdivide expression〉 ::= 〈prefix expression〉+‘LDIVIDE’

〈prefix expression〉 ::= ‘BANG’ 〈exponentiation expression〉
| ‘MINUS’ 〈exponentiation expression〉
| ‘PLUS’ 〈exponentiation expression〉
| 〈exponentiation expression〉

〈exponentiation expression〉 ::= 〈postfix expression〉 ‘HAT’ 〈exponentiation expression〉
| 〈postfix expression〉 ‘ELTPOW’ 〈exponentiation expression〉
| 〈postfix expression〉

〈postfix expression〉 ::= 〈postfix expression〉 ‘TRANSPOSE’
| 〈index expression〉
| 〈common expression〉

〈index expression〉 ::= 〈basic expression〉 ‘LBRACK’ 〈indexes〉 ‘RBRACK’

Note: In addition to the changes from stanc3 related to the above changes to expressions,
it is also worth noting that both stanc3 and this parser differs from spec in not explicitly
including some built-in functions in the grammar.

〈common expression〉 ::= 〈basic expression〉
| 〈lhs〉

〈basic expression〉 ::= ‘INTNUMERAL’
| ‘REALNUMERAL’
| ‘LBRACE’ 〈expression〉+‘COMMA’ ‘RBRACE’

| ‘LBRACK’ 〈expression〉∗‘COMMA’ ‘RBRACK’

| 〈identifier〉 ‘LPAREN’ 〈expression〉 ‘BAR’ 〈expression〉∗‘COMMA’
‘RPAREN’

| 〈identifier〉 ‘LPAREN’ 〈expression〉∗‘COMMA’ ‘RPAREN’

| ‘TARGET’ ‘LPAREN’ ‘RPAREN’
| ‘GETLP’ ‘LPAREN’ ‘RPAREN’
| ‘LPAREN’ 〈expression〉 ‘RPAREN’

〈constr expression〉 ::= 〈additive expression〉

〈indexes〉 ::= 〈index 〉+‘COMMA’

〈index 〉 ::= ε
| ‘COLON’
| 〈expression〉
| 〈expression〉 ‘COLON’
| ‘COLON’ 〈expression〉
| 〈expression〉 ‘COLON’ 〈expression〉



B Final Grammar 22

〈printables〉 ::= 〈printable〉+‘COMMA’

〈printable〉 ::= 〈expression〉
| 〈string literal〉

〈lhs〉 ::= 〈identifier〉
| 〈lhs〉 ‘LBRACK’ 〈indexes〉 ‘RBRACK’

〈statement〉 ::= 〈closed statement〉
| 〈open statement〉

〈atomic statement〉 ::= 〈lhs〉 〈assignment op〉 〈expression〉 ‘SEMICOLON’
| 〈identifier〉 ‘LPAREN’ 〈expression〉∗‘COMMA’ ‘RPAREN’

‘SEMICOLON’
| ‘INCREMENTLOGPROB’ ‘LPAREN’ 〈expression〉 ‘RPAREN’

‘SEMICOLON’
| 〈expression〉 ‘TILDE’ 〈identifier〉 ‘LPAREN’
〈expression〉∗‘COMMA’ ‘RPAREN’ [〈truncation〉] ‘SEMICOLON’

| ‘TARGET’ ‘PLUSASSIGN’ 〈expression〉 ‘SEMICOLON’
| ‘BREAK’ ‘SEMICOLON’
| ‘CONTINUE’ ‘SEMICOLON’
| ‘PRINT’ ‘LPAREN’ 〈printables〉 ‘RPAREN’ ‘SEMICOLON’
| ‘REJECT’ ‘LPAREN’ 〈printables〉 ‘RPAREN’ ‘SEMICOLON’
| ‘RETURN’ 〈expression〉 ‘SEMICOLON’
| ‘RETURN’ ‘SEMICOLON’
| ‘SEMICOLON’

〈assignment op〉 ::= ‘ASSIGN’
| ‘ARROWASSIGN’
| ‘PLUSASSIGN’
| ‘MINUSASSIGN’
| ‘TIMESASSIGN’
| ‘DIVIDEASSIGN’
| ‘ELTTIMESASSIGN’
| ‘ELTDIVIDEASSIGN’

〈string literal〉 ::= ‘STRINGLITERAL’

〈truncation〉 ::= ‘TRUNCATE’ ‘LBRACK’ [〈expression〉] ‘COMMA’ [〈expression〉]
‘RBRACK’

Note: The next two rules are nearly identical, but exist to disambiguate the dangling-else
problem. This is not present in the stanc3 grammar due to the use of a precedence annotation
to resolve this.
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〈open statement〉 ::= ‘IF’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈simple statement〉
| ‘IF’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈open statement〉
| ‘IF’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈closed statement〉

‘ELSE’ 〈open statement〉
| ‘WHILE’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈open statement〉
| ‘FOR’ ‘LPAREN’ 〈identifier〉 ‘IN’ 〈expression〉 ‘COLON’
〈expression〉 ‘RPAREN’ 〈open statement〉

| ‘FOR’ ‘LPAREN’ 〈identifier〉 ‘IN’ 〈expression〉 ‘RPAREN’
〈open statement〉

〈closed statement〉 ::= ‘IF’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈closed statement〉
‘ELSE’ 〈closed statement〉

| ‘WHILE’ ‘LPAREN’ 〈expression〉 ‘RPAREN’ 〈closed statement〉
| 〈simple statement〉
| ‘FOR’ ‘LPAREN’ 〈identifier〉 ‘IN’ 〈expression〉 ‘COLON’
〈expression〉 ‘RPAREN’ 〈closed statement〉

| ‘FOR’ ‘LPAREN’ 〈identifier〉 ‘IN’ 〈expression〉 ‘RPAREN’
〈closed statement〉

〈simple statement〉 ::= ‘LBRACE’ 〈vardecl or statement〉∗ ‘RBRACE’
| 〈atomic statement〉

〈vardecl or statement〉 ::= 〈statement〉
| 〈var decl〉

〈top vardecl or statement〉 ::= 〈statement〉
| 〈top var decl〉
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